Name: \qquad

Complex Analysis

Candidacy Exam, Spring 2005
Choose 3 problems from 1-6 and 3 problems from 6-12.

1. Define analytic functions. What is the Cauchy-Riemann condition? Show that if a function is analytic and $f=u+i v$, then u and v are harmonic.
2. Show that if f is analytic in Ω and $|f|=$ constant, then f is a constant.
3. State and prove the Morera Theorem.
4. Let $D=\{|z|<1\}$ and f be an analytic function in D. We assume that $|f(z)| \leq 1$ in D. State and prove the Schwarz Lemma. Prove that

$$
\frac{\left|f^{\prime}(z)\right|}{\left(1-|f(z)|^{2}\right)} \leq \frac{1}{1-|z|^{2}}
$$

5. Evaluate the integral (Choose one)

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{z+\cos \theta} \tag{2}
\end{equation*}
$$

6. Suppose $f(z)$ is analytic in a domain Ω in \mathbb{C} and γ is a closed curve in Ω. We assume that $|f(z)-1|<1$ for every $z \in \gamma$. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0 .
$$

7. a). What is a simply connected domain? State the Riemann Mapping Theorem. b). Let Ω be the half disk defined by $\Omega=\{z=x+i y| | z \mid<1, x>0\}$. Find a conformal map that will map Ω unto the unit disk.
8. a). Define the principal branch of $\log z$ for $\mathbb{C} \backslash[-\infty, 0]$.
b). Can one define a single-valued branch of $\log z$ in the domain $\Omega=\mathbb{C} \backslash[-1,1]$?
c). Can one define a single-valued analytic branch of $\sqrt{1-z^{2}}$ in Ω ?
9. Let $f_{n}(z)$ be a sequence of analytic functions in a domain Ω in \mathbb{C}. Show that if f_{n} is uniformly bounded on Ω, then there exists a convergent subsequence which converges uniformly on compact subsets in Ω to some function f. Show that f is analytic in Ω.
10. Let $f_{n}(z)$ be a sequence of analytic functions in a domain Ω in \mathbb{C}. If f_{n} converges to a nonconstant function f in Ω. Show that if f_{n} is one to one in Ω, then f is one to one in Ω.
11. Show that a function which is analytic in the whole plane and has a nonessential singularity at ∞ is a polynomial.
12. a). Find all one-to-one linear mappings of the unit disc onto itself.
b). Use the Schwarz lemma to show that every one-to-one conformal mappping of the unit disc onto itself is given by a linear map.
